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1. Introduction

In 1929, G.H. Hardy, J.E. Littlewood and G. Pólya [13,14] have proved an important characterization of convex functions
in terms of a partial ordering of vectors x = (x1, . . . , xn) in Rn . In order to state it we need a preparation. We denote by x↓
the vector with the same entries as x but rearranged in decreasing order,

x↓
1 � · · · � x↓

n .

Then x is weakly majorized by y (abbreviated, x ≺∗ y) if

k∑
i=1

x↓
i �

k∑
i=,1

y↓
i for k = 1, . . . ,n (1)

and x is majorized by y (abbreviated, x ≺ y) if in addition
n∑

i=1

x↓
i =

n∑
i=1

y↓
i . (2)

Intuitively, x ≺ y means that the components in x are less spread out than the components in y. As shown in Theorem 1
below, the concept of majorization admits an order-free characterization based on the notion of doubly stochastic matrix.
Recall that a matrix A ∈ Mn(R) is doubly stochastic if it has nonnegative entries and each row and each column sums to
unity.

Theorem 1. (Hardy, Littlewood and Pólya [13, Theorem 8]) Let x and y be two vectors in Rn, whose entries belong to an interval I .
Then the following statements are equivalent:
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i) x ≺ y;
ii) There is a doubly stochastic matrix A = (aij)1�i, j�n such that x = Ay;
iii) The inequality

∑n
i=1 f (xi)�

∑n
i=1 f (yi) holds for every continuous convex function f : I →R.

The proof of this result is also available in the recent monographs [22] and [25].

Remark 1. M. Tomić [31] and H. Weyl [32] have noticed the following characterization of weak majorization: x ≺∗ y if and
only if

∑n
i=1 f (xi) �

∑n
i=1 f (yi) for every continuous nondecreasing convex function f defined on an interval containing

the components of x and y. The reader will find the details in [22, Proposition B2, p. 157].

Nowadays many important applications of majorization to matrix theory, numerical analysis, probability, combinatorics,
quantum mechanics etc. are known, see [3,22,25,27,28]. They were made possible by the constant growth of the theory,
able to uncover the most diverse situations.

In what follows we will be interested in a simple but basic extension of the concept of majorization as mentioned above:
the weighted majorization. Indeed, the entire subject of majorization can be switched from vectors to Borel probability
measures by identifying a vector x = (x1, . . . , xn) in Rn with the discrete measure 1

n

∑n
i=1 δxi acting on R. By definition,

1

n

n∑
i=1

δxi ≺ 1

n

n∑
i=1

δyi

if the conditions (1) and (2) above are fulfilled, and Theorem 1 can be equally seen as a characterization of this instance of
majorization.

Choquet’s theory made available a very general framework of majorization by allowing the comparison of Borel probabil-
ity measures whose supports are contained in a compact convex subset of a locally convex separated space. The highlights
of this theory are presented in [28] and refer to a concept of majorization based on condition iii) in Theorem 1 above.
The particular case of discrete probability measures on the Euclidean space RN , that admits an alternative approach via
condition ii) in the same Theorem 1 is of interest to us. Indeed, in this case one can introduce a relation of the form

m∑
i=1

λiδxi ≺
n∑

j=1

μ jδy j , (3)

where all coefficients λi and μ j are weights, by asking the existence of an m × n-dimensional matrix A = (aij)i, j such that

aij � 0, for all i, j, (4)
n∑

j=1

aij = 1, i = 1, . . . ,m, (5)

μ j =
m∑

i=1

aijλi, j = 1, . . . ,n (6)

and

xi =
n∑

j=1

aij y j, i = 1, . . . ,n. (7)

The matrices verifying the conditions (4) and (5) are called stochastic on rows. When m = n and all weights λi and μ j are
equal, the condition (6) assures the stochasticity on columns, so in that case we deal with doubly stochastic matrices.

The fact that (3) implies

m∑
i=1

λi f (xi) ≺
n∑

j=1

μ j f (y j),

for every continuous convex function f defined on a convex set containing all points xi and yi , is covered by a general
result due to S. Sherman [29]. See also the paper of J. Borcea [7] for a nice proof and important applications.

It is worth noticing that the extended definition of majorization given by (3) is related, via equality (7), to an optimization
problem as follows:

xi = arg min
z∈RN

1

2

n∑
aij‖z − y j‖2, for i = 1, . . . ,m.
j=1
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The aim of the present paper is to discuss the analogue of the relation of majorization (3) within certain classes of spaces
with curved geometry. We will start with the spaces with global nonpositive curvature (abbreviated, global NPC spaces). The
subject of majorization in these spaces was touched in [24] via a different concept of majorization which however does not
provide an extension of Theorem 1. This goal is accomplished here via another approach of majorization, inspired by the
recent work on least squares mean on Riemannian manifolds, due to Lawson and Lim [19] (and simplified by Bhatia and
Karandikar [6]). See Theorem 4. In a recent paper, Lim [21] also obtained an extension of Hardy–Littlewood–Pólya Theorem,
using a different argument. However, our extension is more general, allowing the majorization between discrete measures
with supports of different cardinality (as in the case of Sherman’s aforementioned result). As an application we are able
to derive a number of new inequalities involving elements of suitable global NPC spaces and to recover some well known
results (such as the matrix form of the arithmetic mean–geometric mean inequality) as well as some of the results proved
by Lim.

The important consequence of majorization, Schur’s convexity, also works in the context of global NPC spaces. Our
Theorem 5 asserts that if 1

n

∑n
i=1 δxi ≺ 1

n

∑n
i=1 δyi in a global NPC space M , and f : Mn →R is a continuous convex function

invariant under the permutation of coordinates, then

f (x1, . . . , xn) � f (y1, . . . , yn).

The argument of Theorem 5 yields a partial generalization of Rado’s geometric characterization of majorization: if
1
n

∑n
i=1 δxi ≺ 1

n

∑n
i=1 δyi then (x1, . . . , xn) is a convex combination of the n! points (yσ(1), . . . , yσ(n)), obtained by permuting

the components of (y1, . . . , yn). The converse implication also works and this is proved in the paper of Lim [21].
The paper ends with a discussion concerning the case of Wasserstein space P2(R

N ), of all Borel probability measures
on RN having finite second moments. This is a complete metric space when endowed with the Wasserstein metric,

W2(μ,ν) = inf

( ∫
RN×RN

‖x − y‖2 dγ (x, y)

)1/2

,

the infimum being taken over all Borel probability measures γ on RN ×RN with marginals μ and ν . Despite the fact that
the Wasserstein space is not a global NPC space, it has nice features that assure the validity of the Hardy–Littlewood–Pólya
Theorem and of Schur convexity in its context.

A previous version of our paper has been circulated as a preprint posted on arXiv [26].

2. Global NPC spaces

Definition 1. A global NPC space is a complete metric space M = (M,d) for which the following inequality holds true: for
each pair of points x0, x1 ∈ M there exists a point y ∈ M such that for all points z ∈ M ,

d2(z, y) � 1

2
d2(z, x0) + 1

2
d2(z, x1) − 1

4
d2(x0, x1). (8)

These spaces are also known as CAT(0) spaces or Hadamard spaces. See respectively [9] and [30]. In a global NPC space,
each pair of points x0, x1 ∈ M can be connected by a geodesic (that is, by a rectifiable curve γ : [0,1] → M such that the
length of γ |[s,t] is d(γ (s), γ (t)) for all 0 � s � t � 1). Moreover, this geodesic is unique.

In a global NPC space, the geodesics play the role of segments. The point y that appears in Definition 1 is the midpoint
of x0 and x1 and has the property

d(x0, y) = d(y, x1) = 1

2
d(x0, x1).

We will denote it as 1
2 x0 � 1

2 x1. It is worth noticing that

1

2
x0 �

1

2
x1 = arg min

z∈M

1

2

[
d2(x0, z) + d2(x1, z)

]
.

See [5, Proposition 6.2.8]. All other convex combinations (1−λ)x0 �λx1 of x0 and x1 can be introduced in the same manner.
An important role is played by the inequality (8) (in technical terms, the uniform convexity of the square distance).

Every Hilbert space is a global NPC space. Its geodesics are the line segments and 1
2 x0 � 1

2 x1 = x0+x1
2 .

A more sophisticated example is provided by the upper half-plane

H = {z ∈C: Im z > 0},
when endowed with the Poincaré metric,

ds2 = dx2 + dy2

2
.

y
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In this case the geodesics are the semicircles in H perpendicular to the real axis and the straight vertical lines ending on
the real axis.

The space Sym++(n,R), of all positively definite matrices with real coefficients becomes a global NPC space when en-
dowed with the trace metric,

dtrace(A, B) =
(

n∑
k=1

log2 λk

)1/2

,

where λ1, . . . , λn are the eigenvalues of AB−1. In this case the curve

γ : [0,1] → Sym++(n,R), γAB(t) = A1/2(A−1/2 B A−1/2)t
A1/2

is the unique minimal geodesic (up to parametrization) joining A and B (so that the midpoint of A and B is in this case
1
2 A � 1

2 B = A1/2(A−1/2 B A−1/2)1/2 A1/2).
A natural generalization of the last example in the setting of separable Hilbert spaces has recently been worked out by

Larotonda [17]. If H is such a space, we denote by HS(H) the bilateral ideal of Hilbert–Schmidt operators of L(H, H). The
space HS(H) is a Banach algebra (without unit) with respect to the Hilbertian norm ‖A‖2 = trace1/2(A∗ A). The positive part,

H̃S(H)
++ = {

A + λI > 0: A∗ = A, A ∈ HS(H), λ ∈R
}
,

of the extended Hilbert–Schmidt algebra H̃S(H) = HS(H) +RI (the algebra obtained by adjoining the identity), constitutes a
global NPC space with respect to the distance

d(A, B) = ∥∥log
(

A1/2 B−1 A1/2)∥∥
2.

Both spaces Sym++(n,R) and H̃S(H)
++

are Riemannian manifolds. See respectively [18] and [20]. In general, a Rieman-
nian manifold is a global NPC space if and only if it is complete, simply connected and of nonpositive sectional curvature.
Besides manifolds, other important examples of global NPC spaces are the Bruhat–Tits buildings (in particular, the trees).
See [9].

The direct product of metric spaces Mi = (Mi,di) (i = 1, . . . ,n) is the metric space M = (M,dM) defined by M = ∏n
i=1 Mi

and

dM(x, y) =
(

n∑
i=1

di(xi, yi)
2

)1/2

.

It is a global NPC space if all factors are global NPC spaces.
More information on global NPC spaces is available in [2,16,30].

Definition 2. A set C ⊂ M is called convex if γ ([0,1]) ⊂ C for each geodesic γ : [0,1] → M joining γ (0), γ (1) ∈ C .
A function ϕ : C → R is called convex if C is a convex set and for each geodesic γ : [0,1] → C the composition ϕ ◦ γ is

a convex function in the usual sense, that is,

ϕ
(
γ (t)

)
� (1 − t)ϕ

(
γ (0)

) + tϕ
(
γ (1)

)
for all t ∈ [0,1].

The function ϕ is called concave if −ϕ is convex.

The distance function on a global NPC space M = (M,d) verifies not only the inequality (8), but also the following
stronger version of it,

d2(z, xt) � (1 − t)d2(z, x0) + td2(z, x1) − t(1 − t)d2(x0, x1);
here z is any point in C and xt is any point on the geodesic γ joining x0, x1 ∈ C . In terms of Definition 2, this shows that
all the functions d2(·, z) are uniformly convex. In particular, they are convex and the balls are convex sets.

In a global NPC space M the distance function d is convex on M × M , while the functions dα(·, z), with α � 1, are convex
on M . See [30, Corollary 2.5], for details.

A stronger condition than convexity is log-convexity, that means that the logarithm of the given function is convex. Due
to the arithmetic mean–geometric mean inequality, any such function is necessarily convex.

Some examples of log-convex functions defined on the global NPC space of positively defined matrices are mentioned
below:

Theorem 2. Every positive linear functional on Mn(R) induces a log-convex function on Sym++(n,R) in the sense of Definition 2.
In particular, the trace is a log-convex function.
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Proof. It suffices to consider the case of norm-1 positive linear functionals. The set of all such functionals constitutes a
weak-star compact convex K , whose extreme points are the functionals ωu : A → 〈Au, u〉, associated to the unit vectors
a ∈ Rn . See [8, Theorem 2.3.15, p. 53]. According to the Krein–Milman theorem, every ω ∈ K is the pointwise limit of a net
consisting of pure states. Thus the proof of Theorem 1 reduces to the case of pure states, which is covered by Theorem 1
in [33]. �

The determinant function is also log-convex due to the identity

det A1/2(A−1/2 B A−1/2)t
A1/2 = (det A)1−t(det B)t .

Theorem 2 also works in the case of Larotonda’s space H̃S(H)
++

, but in this case the convexity of the trace function
should be understood in the context of functions taking values in (−∞,∞] (when the inequality of convexity in Definition 2
is assumed only for t ∈ (0,1)).

Theorem 2 makes possible the extension of the Legendre duality to the case of functions defined on certain global NPC

spaces such as Sym++(n,R) and H̃S(H)
++

. Though this is outside the scope of our paper we mention here the definition of
the conjugate of a function f : Sym++(n,R) →R:

f ∗(A) = sup
B∈Sym++(n,R)

[
trace(AB) − f (B)

]
.

Notice that the effective domain of f ∗ ,

dom f ∗ = {
A: f ∗(A) < ∞}

,

is a convex set and when this set is nonempty, then f ∗ is a lower semicontinuous convex function on it. The function
1
2 trace(A2) is an example of self-conjugated function.

More examples of convex functions defined on the global NPC space Sym++(n,R) can be obtained by taking into account
the following two simple remarks:

• If f : Sym++(n,R) → R is convex and g :R →R is increasing and convex, then g ◦ f is convex;
• If Ψ : Mn(R) → Mn(R) is a strictly positive linear map and f is increasing and convex, then f ◦ Ψ |Sym++(n,R) is convex.

The concept of a convex/concave function defined on a convex subset of a global NPC space can be extended verbatim
to the case of vector-valued functions taking values in a regular ordered Banach space E . See [11] for a short account on
these spaces. A nontrivial example is the embedding of Sym++(n,R) into the regular ordered Banach space Re Mn(R) of
self-adjoint matrices, endowed with the Hilbertian structure associated to the trace norm and the natural ordering,

A � B ⇔ 〈Ax, x〉 � 〈Bx, x〉 for every x.

The convexity of this function proves to be equivalent to the matrix form of the arithmetic mean–geometric mean inequality.
A proof of this inequality is given in the next section.

Most of our results extend easily to this context, by taking into account that a vector-valued function f : C → E is convex
if, and only if, the composition x′ ◦ f with every positive linear functional x′ ∈ E ′ is a convex function. Indeed, an element
x ∈ E is in the positive cone if, and only if, x′(x) � 0 for every positive linear functional x′ ∈ E ′ .

3. The extension of Hardy–Littlewood–Pólya Theorem

When x1, . . . , xm, y1, . . . , yn are points of a global NPC space M , and λ1, . . . , λm in [0,1] are weights that sum to 1, we
will define the relation of majorization

m∑
i=1

λiδxi ≺
n∑

j=1

μ jδy j (9)

by asking the existence of an m ×n-dimensional matrix A = (aij)i, j that is stochastic on rows and verifies the following two
conditions:

μ j =
m∑

i=1

aijλi, j = 1, . . . ,n (10)

and

xi = arg min
z∈M

1

2

n∑
aijd

2(z, y j), i = 1, . . . ,m. (11)

j=1
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The existence and uniqueness of the optimization problems (11) is assured by the fact that the objective functions are
uniformly convex and positive. See [16, Section 3.1], or [30, Proposition 1.7, p. 3]. In the case where M = Sym++(n,R), the
points xi are the unique solutions of the Karcher equations,

n∑
j=1

aij log
(
x1/2 y−1

j x1/2) = 0.

This follows by computing the differentials of the objective functions in the optimization problems (11) and by adapting the
argument of Theorem 6.3.4 in [5], p. 219, to the presence of weights.

Notice that the above definition agrees with the usual one in the Euclidean case. It is also related to the definition of
the barycenter of a Borel probability measure μ defined on a global NPC space M . Precisely, if μ ∈ P2(M) (the set of those
probability measures under which all functions d2(·, z) are integrable), then its barycenter is defined by the formula

bar(μ) = arg min
z∈M

1

2

∫
M

d2(z, x)dμ(x).

This definition, due to E. Cartan [10], is inspired by Gauss’s Least Squares Method. A detailed approach of the notion of
barycenter is offered by the paper of Sturm [30].

The particular case of discrete probability measures λ = ∑n
i=1 λiδxi is of special interest because the barycenter of λ

provides the true analogue of the arithmetic weighted mean λ1x1 + · · · + λnxn in the context of global NPC spaces. Indeed,

bar(λ) = arg min
z∈M

1

2

n∑
i=1

λid
2(z, xi),

and the way bar(λ) provides a mean with nice features was recently clarified by Lawson and Lim [19]. As an immediate
consequence one obtains the relation

δbar(λ) ≺ λ.

We will denote bar(λ) as λ1x1 � · · · � λnxn in order to outline its special meaning and to avoid any confusion with
λ1x1 + · · · + λnxn , when the later makes sense. For example, in the case of the global NPC space Sym++(n,R), endowed
with the trace metric,

1

2
A � 1

2
B = A1/2(A−1/2 B A−1/2)1/2

A1/2 � 1

2
A + 1

2
B,

a fact which illustrates the noncommutative analogue of the arithmetic mean–geometric mean inequality. See [5, Sec-
tion 6.3], or [18], for details.

Our extension of the Hardy–Littlewood–Pólya Theorem of majorization is based on Jensen’s inequality. In the case of flat
spaces the discrete form of this inequality follows immediately from the property of associativity of convex combinations:

n+1∑
i=1

λi xi = (1 − λn+1)

(
n∑

i=1

λi

1 − λn+1
xi

)
+ λn+1xn+1.

Since this doesn’t work in the general context of global NPC spaces, the generalization of Jensen’s inequality needed new
ideas and was done by J. Jost [15]. We recall it here in the formulation of Eells and Fuglede [12, Proposition 12.3, p. 242]:

Theorem 3 (Jensen’s Inequality). For any lower semicontinuous convex function f : M → R and any Borel probability measure μ ∈
P2(M) we have the inequality

f
(
bar(μ)

)
�

∫
M

f (x)dμ(x),

provided the right hand side is well-defined.

The proof of Eells and Fuglede is based on the following remark concerning barycenters: If a probability measure μ is
supported by a convex closed set K , then its barycenter bar(q) lies in K . A probabilistic approach of Theorem 3 is due to
Sturm [30].

An immediate consequence of Theorem 3 is the weighted form of the matrix form of the arithmetic mean–geometric
mean inequality,

λ1 A1 � · · ·� λn An � λ1 A1 + · · · + λn An,

which follows from the convexity of the functions A → 〈Ax, x〉, for A ∈ Sym++(n,R) and x ∈Rn . See [33], for another short
proof of this inequality.
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Another consequence of Theorem 3 is the following couple of inequalities that work for any points z, x1, . . . , xn, y1, . . . , yn

in a global NPC space:

d2
(

1

n
x1 � · · ·� 1

n
xn, z

)
� d2(x1, z) + · · · + d2(xn, z)

n

and

d

(
1

n
x1 � · · ·� 1

n
xn,

1

n
y1 � · · ·� 1

n
yn

)
� d(x1, y1) + · · · + d(xn, yn)

n
.

The next theorem offers a partial extension of Hardy–Littlewood–Pólya Theorem to the context of global NPC spaces.

Theorem 4. If

m∑
i=1

λiδxi ≺
n∑

j=1

μ jδy j

in the global NPC space M, then, for every continuous convex function f defined on a convex subset U ⊂ M containing all points xi
and y j we have

m∑
i=1

λi f (xi) �
n∑

j=1

μ j f (y j).

Proof. By our hypothesis, there is an m × n-dimensional matrix A = (aij)i, j that is stochastic on rows and verifies the con-
ditions (10) and (11). The last condition, shows that each point xi is the barycenter of the probability measure

∑n
j=1 aijδy j ,

so by Jensen’s inequality we infer that

f (xi) �
n∑

j=1

aij f (y j).

Multiplying each side by λi and then summing up over i from 1 to m, we conclude that

m∑
i=1

λi f (xi) �
m∑

i=1

(
λi

n∑
j=1

aij f (y j)

)
=

n∑
j=1

(
m∑

i=1

aijλi

)
f (y j) =

n∑
j=1

μ j f (y j). �

In a global NPC space the distance function from a convex set is a convex function. See [30, Corollary 2.5]. Combining
this fact with Theorem 4 we infer the following result.

Corollary 1. If

m∑
i=1

λiδxi ≺
n∑

j=1

μ jδy j ,

and all coefficients λi are strictly positive, then {x1, . . . , xm} is contained in the convex hull of {y1, . . . , yn}.
In particular, the points xi spread out less than the points y j .

Another application of Theorem 4 yields a new set of inequalities verified by the functions d(·, z) in a global NPC
space M . These functions are convex and the same is true for the functions f (d(·, z)) whenever f is a continuous nonde-
creasing convex function defined on R+ . According to Theorem 4, if 1

n

∑n
i=1 δxi ≺ 1

n

∑n
i=1 δyi in M , then

∑n
i=1 f (d(xi, z)) �∑n

i=1 f (d(yi, z)). Taking into account Remark 1 we arrive at the following result:

Corollary 2. If 1
n

∑n
i=1 δxi ≺ 1

n

∑n
i=1 δyi in M = (M,d), then for all z ∈ M,(

d(x1, z), . . . ,d(xn, z)
) ≺∗

(
d(y1, z), . . . ,d(yn, z)

)
.

According to a result due to Ando (see [22, Theorem B.3a, p. 158]), the converse of Corollary 2 works at least when
M = R.

The entropy function,

H(t) = −t log t,
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is concave and decreasing for t ∈ [1/e,∞), so by Corollary 2 we infer that

n∏
i=1

d(xi, z)d(xi ,z) �
∏n

i=1
d(yi, z)d(yi ,z),

whenever 1
n

∑n
i=1 δxi ≺ 1

n

∑n
j=1 δy j and all the points xi and yi are at a distance � 1/e from z.

Many other inequalities involving distances in a global NPC space can be derived from Corollary 2 and the following
result due to Fan and Mirsky (detailed in [22, Proposition B6, p. 160]) proves very useful in this respect: if x, y ∈ Rn+ , then
x ≺∗ y if, and only if,

Φ(x) � Φ(y)

for all symmetric gauges Φ on Rn . These are the functions Φ : Rn →R such that:

(1) Φ(x) > 0 when x �= 0;
(2) Φ(αx) = |α|Φ(x) for all real α;
(3) Φ(x + y)� Φ(x) + Φ(y);
(4) Φ(x1, . . . , xn) = Φ(ε1xπ(1), . . . , εnxπ(n)) whenever each εi belongs to {−1,1} and π is any permutation of {1, . . . ,n}.

Every symmetric gauge Φ induces a distance dΦ on the space Sym++(n,R) given by the formula

dΦ(A, B) = Φ
(
λ1(A, B), . . . , λn(A, B)

)
,

where λ1(A, B), . . . , λn(A, B) are the eigenvalues of the matrix log(A−1/2 B A−1/2). This distance makes Sym++(n,R) a global
NPC space, a fact that was first noticed by Bhatia [4]. According to Theorem 4, if 1

n

∑n
i=1 δAi ≺ 1

n

∑n
i=1 δBi in Sym++(n,R),

then for all C ∈ M ,(
dΦ(A1, C), . . . ,dΦ(An, C)

) ≺∗
(
dΦ(B1, C), . . . ,dΦ(Bn, C)

)
,

which allows us to retrieve a result due to Lim. See [21, Corollary 7.6].

4. The connection with Schur convexity

It is worth noticing the connection between our definition of majorization and the subject of Schur convexity (as pre-
sented in [22]):

Theorem 5. Suppose that 1
n

∑n
i=1 δxi ≺ 1

n

∑n
i=1 δyi in the global NPC space M, and f : Mn → R is a continuous convex function

invariant under the permutation of coordinates. Then

f (x1, . . . , xn) � f (y1, . . . , yn).

Proof. For the sake of simplicity we will restrict here to the case where n = 3. The proof of the general case is similar.
According to the definition of majorization, if 1

3

∑3
i=1 δxi ≺ 1

3

∑3
i=1 δyi , then there exists a doubly stochastic matrix A =

(aij)
3
i, j=1 such that

xi = bar

(
3∑

j=1

aijδy j

)
for i = 1, . . . ,3.

As A can be uniquely represented in the form

A =
(

λ1 + λ2 λ3 + λ5 λ4 + λ6
λ3 + λ4 λ1 + λ6 λ2 + λ5
λ5 + λ6 λ2 + λ4 λ1 + λ3

)
,

where all λk are nonnegative and
∑6

k=1 λk = 1 (a simple matter of linear algebra) we can represent the elements x j as

x1 = bar
(
(λ1 + λ2)δy1 + (λ3 + λ4)δy2 + (λ5 + λ6)δy3

)
,

x2 = bar
(
(λ3 + λ5)δy1 + (λ1 + λ6)δy2 + (λ2 + λ4)δy3

)
,

x3 = bar
(
(λ4 + λ6)δy1 + (λ2 + λ5)δy2 + (λ1 + λ3)δy3

)
.

It is easy to see that (x1, x2, x3) is the barycenter of

μ = λ1δ(y ,y ,y ) + λ2δ(y ,y ,y ) + λ3δ(y ,y ,y ) + λ4δ(y ,y ,y ) + λ5δ(y ,y ,y ) + λ6δ(y ,y ,y ),
1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1
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so by Jensen’s inequality and the symmetry of f we get

f (x1, . . . , xn) � λ1 f (y1, y2, y3) + λ2 f (y1, y3, y2) + λ3 f (y2, y1, y3)

+ λ4 f (y2, y3, y1) + λ5 f (y3, y1, y2) + λ6 f (y3, y2, y1)

= (λ1 + · · · + λ6) f (y1, y2, y3) = f (y1, y2, y3). �
The following consequence of Theorem 5 relates the majorization of measures to the dispersion of their supports.

Corollary 3. If 1
n

∑n
i=1 δxi ≺ 1

n

∑n
i=1 δyi in the global NPC space M = (M,d), then∑

1�i< j�n

dα(xi, x j) �
∑

1�i< j�n

dα(yi, y j),

for every α � 1.

Rado’s geometric characterization of majorization in Rn asserts that (x1, . . . , xn) ≺ (y1, . . . , yn) in Rn if, and only if,
(x1, . . . , xn) lies in the convex hull of the n! points (yσ(1), . . . , yσ(n)), obtained by permuting the components of (y1, . . . , yn)

(that is, (x1, . . . , xn) is a convex combination of these n! points). See [22, Corollary B.3, p. 34]. A relation of majorization of
this kind can be introduced in the power space Mn (of any global NPC space M = (M,d) as well as of P2(R

N )) by putting

(x1, . . . , xn) ≺ (y1, . . . , yn)

if 1
n

∑n
i=1 δxi ≺ 1

n

∑n
i=1 δyi . The proof of Theorem 5 yields immediately the necessity part of Rado’s characterization: if

(x1, . . . , xn) ≺ (y1, . . . , yn) in Mn , then (x1, . . . , xn) is a convex combination of the n! points (yσ(1), . . . , yσ(n)). During the
revision of the initial submission of our paper we learned about the paper of Y. Lim [21], that contains the proof of the full
extension of Rado’s characterization: (x1, . . . , xn) ≺ (y1, . . . , yn) in Mn if, and only if, (x1, . . . , xn) is a convex combination of
the points (yσ(1), . . . , yσ(n)).

5. The case of Wasserstein space

The reader has probably noticed that the occurrence of the following two facts is essential for the theory of majorization
presented above:

• the existence of a unique minimizer for the functionals of the form

J (x) = 1

2

m∑
i=1

λid
2(x, xi)

(thought of as the barycenter bar(λ) of the discrete probability measure λ = ∑m
i=1 λiδxi );• Jensen’s inequality: for every convex function f : C → R and every discrete probability measure λ = ∑m

i=1 λiδxi sup-
ported by C ,

f
(
bar(λ)

)
�

∫
C

f dλ =
m∑

i=1

λi f (xi).

The recent paper of Agueh and Carlier [1] shows that such a framework is available also in the case of certain Borel
probability measures, equipped with the Wasserstein metric. More precisely, they consider the space P2(R

N ) (of all Borel
probability measures on RN having finite second moments), endowed with the Wasserstein metric,

W2(μ,ν) = inf

( ∫
RN×RN

‖x − y‖2 dγ (x, y)

)1/2

,

where the infimum is taken over all Borel probability measures γ on RN ×RN with marginals μ and ν .
The barycenter bar(

∑m
i=1 λiδνi ), of a discrete probability measure

∑m
i=1 λiδνi , is defined as the minimizer of the functional

J (ν) = 1

2

m∑
i=1

λiW2
2 (νi, ν).

This minimizer is unique when at least one of the measures νi vanishes on every Borel set of Hausdorff dimension N − 1.
See [1, Proposition 2.2 and Proposition 3.5].
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The natural class of convex function on the Wasserstein space is that of functions convex along barycenters. According to
[1, Definition 7.1], a function F : P2(R

N ) → R is said to be convex along barycenters if for any discrete probability measure∑m
i=1 λiδνi on P2(R

N ) we have

F
(

bar

(
m∑

i=1

λiδνi

))
�

m∑
i=1

λiF(νi).

This notion of convexity coincides with the notion of displacement convexity introduced by McCann [23] if N = 1,
and is stronger than this in the general case. However, the main examples of displacement convex functions (such as the
internal energy, the potential energy and the interaction energy) are also examples of functions convex along barycenters.
See [1, Proposition 7.7].

Theorem 6. The concept of majorization and all results noticed in the case of global NPC spaces (in particular, Theorem 4 and The-
orem 5) remain valid in the context of discrete probability measures on P2(R

N ) having unique barycenters and the functions F :
P2(R

N ) →R convex along barycenters.

Rado’s geometric characterization of majorization in Rn extends also to the case of Wasserstein space, the argument
being similar to that provided by Lim [21, Theorem 7.1], in the case of global NPC spaces.
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